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V. CoNCLUSIONS

A common base varactor tuned transistor amplifier
circuit has been analvzed and the circuit conditions for
proper oscillation have been defined. Two such oscil-
lators were constructed, one at L-band and the other at
UHF. Both performed as expected, the results conform-
ing quite well to what the analysis predicted. It is ex-
pected that the use of multiple diodes can improve the
performance of the circuit. Collector base multiplication
can be used to extend this operation into S-band.
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Propagation in a Microwave Model Waveguide of
Variable Sutface Impedance—Theory
and Experiment
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Abstract—In this paper propagation in a model terrestrial wave-
guide is investigated. The surface impedance of the waveguide
boundary is assumed to vary along the path of propagation. A quasi-
optical approach is used to derive the solution for the case of an
abrupt variation in the surface impedance. The reciprocity theorem is
employed to facilitate that solution for both directions of propagation.
Experimental verification of this technique is obtained from measure-
ments in the model waveguide.
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I. INTRODUCTION

N EARLIER model studies*?? of radio propagation
in a nonuniform terrestrial waveguide, the varia-
tions of the electrical properties of the ionosphere

1S. W. Maley and E. Bahar, “Effects of wall perturbations in
multimode waveguides,” J. Res. NBS (Radio Sci.), vol. 68D, pp.
35-42, January 1964.

2 E. Bahar and J. R. Wait, “Microwave model techniques to
study VLF radio propagation in the earth-ionosphere waveguide,” in
Proc. of the Symp. on Quasi-Optics, J. Fox, Ed. Brooklyn, N. Y.:
Polytechnic Press, 1964, pp. 447-164.

3 , “Propagation in a model terrestrial waveguide of nonuni-
form height: theory and experiment,” J. Res. NB.S (Radio Sci.), vol.
69D, pp. 1445-1463, November 1965.
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were represented by corresponding variations in the
effective height of reflection of the ionosphere boundary
along the path of propagation. The ionosphere, consid-
ered sharply bounded, was characterized by a constant
finite surface impedance boundary.*® While this repre-
sentation of the nonuniform ionosphere serves as a
convenient model to study mode conversion phenom-
ena, it is evident from comparison of the attenuation
rates along various paths of propagation at different
times of the day® that a constant surface impedance
boundary cannot, in general, be a good representation of
the ionosphere boundary. For the purpose of investigat-
ing radio propagation over large distances, it would
therefore be more appropriate to characterize the iono-
sphere by a boundary of variable height and surface
impedance.

In this paper the effects of an abrupt variation in the
surface impedance of the boundary are investigated in
particular, and the height of the ionosphere is assumed
constant. Furthermore, as in the two-dimensional dual
model discussed earlier,’?* a flat earth approximation
will be assumed and the effects of the earth’s magnetic
field will be neglected. The effects of a gradual variation
in the surface impedance along the path of propagation
may also be derived from these results.?

The basic experimental tool in this work is the rec-
tangular dual model® waveguide whose half height %
corresponds to the height of the ionosphere in wave-
lengths, as shown in Fig. 1. The vertical boundaries (at

4 E. Bahar, “Model studies of the influence of ionosphere per-
turbations on VLF propagation,” Dept. of Elec. Engrg., University of
Colorado, Boulder, Tech. Rept. ARPA, Contract CST 7348, May
1964.

5 J. R. Wait and K. P. Spies, “Characteristics of the earth-iono-
sphere waveguide for VLF radio waves,” NBS Tech. Note 300,
December 1964.

¢ D. D. Crombie, “On the use of VLF measurements for obtaining
information on the lower ionosphere (especially during solar flares),”
Proc. IEEE, vol. 53, pp. 2027-2034, December 1965.

7 E. Bahar, paper to be published in J. Res. NBS (Radio Sci.).
vol. 2 (New Series), March 1967.

8 —, “Propagation of VLF radio waves in a model earth-
ionosphere waveguide of arbitrary height, and finite surface im-
pedance boundary: theory and experiment,” J. Res. NBS (Radio
Sei.), vol. 1 (New Series), pp. 925-938, August 1966.
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Fig. 2. Waveguide with an abrupt variation in the surface imped-
ance boundaries analyzed as a multiport waveguide junction.

z=+d/2) are electric conductors. Only TE,, modes
with symmetric electric fields in the (y, 2) plane are
launched into the system such that the (x, 2) plane in the
dual model (on which H,=0) corresponds to a perfectly
conducting earth. The horizontal finite surface imped-
ance boundaries (at y= +%) correspond to the surface
impedance for grazing modes at the ionosphere bound-
ary.* Hence either the upper or lower half of the wave-
guide corresponds to the earth-ionosphere waveguide.

II. FORMULATION OF THE PROBLEM

Consider a multimode waveguide with uniform cross
section into which only TE,, modes (n=1, 3,5, - - -)
are launched, as shown in Fig, 2. The surface impedance
Zg at the narrow boundaries y= + 4 is Z§ for x <0 and
Z8 for x>0. The transition region (x=0 plane) in
which the discontinuity of the surface impedance occurs
is treated as a two-port waveguide junction.? The right-
hand coordinate systems connected with Ports 4 and B
are Xa, Ya, %a, and xs, vs, %, respectively, such that the y
axes coincide with the transition plane and the x axes
point toward the waveguide junction.

This class of problems involving waveguide discon-
tinuities can, in general, be reduced to the solution of an
infinite set of linear algebraic equations.® Solutions of
the infinite set of equations have been derived in terms
of infinite products. These solutions are based either on
a method for inverting the special form of the resulting
matrix equation,’®™ or on the function theoretical
method which represents an infinite series of a certain
type by a contour integral of the Cauchy type.? The
quasi-optical solution developed in the paper is ex-
pressed in terms of an infinite sum; the higher order
terms in the series correspond to correction terms due to
finite reflections at the waveguide discontinuity. These

® R.E. Collin, Field Theory of Guided 1T aves. New York: McGraw-
Hill, 1960.

10 R, Mittra, “Relative convergence of the solution of a doubly
infinite set of equations,” J. Res. NBS, vol. 67D, pp. 245-254, March—
April 1963.

1 D, S. Karjala and R. Mittra, “Scattering at the junction of two
semi-infinite parallel-impedance plane waveguides,” Canadian J.
Phys., vol. 43, pp. 849-854, May 1965.

12 H. J. Frankena, “Coupling of two semi-infinite circular wave-
guides with walls of different surface admittances,” presented at the
1965 URSI Symp. on Electromagnetic Wave Theory, Delft, The
Netherlands.
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solutions have been found to be very suitable in the case
of propagation in multimode waveguides in which the
surface impedance may vary abruptly from zero to the
order of magnitude of the free space wave impedance
1= (uo/€0)'/2. The efficiency of this technique is demon-
strated by a comparison with experimental results taken
from a model waveguide. Furthermore, the quasi-
optical solutions may be readily generalized to derive
the solution for propagation in waveguide regions in
which the surface impedance varies continuously in an
arbitrary manner.”

This problem is closely related to the extensive work
on mixed-path propagation which starts with the com-
pensation theorem and proceeds via a first-order per-
turbation of an integral equation. The formulation has
been applied to the curved earth-ionosphere wave-
guide.® Experimental model studies of propagation of
ground waves across mixed paths have also been con-
ducted.’* A review of the progress in this area (including
many references to earlier work) has been presented by
Wait.'®

The modal equation satisfied by a waveguide mode
propagating in the region bounded by the surface im-
pedance Z§ is?

A A
4 n— Yan 4 _A
exp {i2kCoh} = ———— = Ry(C 1
xp {i2kCoh} e L (1)

where £ is the free space wavenumber, C4 can be iden-
tified as the complex angle of incidence of the nth mode
on the surface impedance boundaries of the waveguide,
V4 is the surface admittance (the reciprocal of the
surface impedance Z%), and RZ is the reflection coeffi-
cient for horizontally polarized waves. Actually V% is
also a function of the mode number, but considering that
most of the energy in the multimode waveguide is dis-
tributed into the lower order modes, the “constant”
surface impedance concept has been employed. For
grazing modes, |C,A;| <<[ Yg]n and R? may be approx-
imated by

Ri ~ — exp {——2C:Z§/n}. (2)
Hence (1) reduces to

A nmw

Chme————y  p=1,3,5---. (3
Wkh — izt /n) ®)

Therefore, for modes of grazing incidence in multimode
waveguides, [Cﬁ[2<<1.

For the cases in which the approximate formula is not
appropriate, (1) may be solved by an iterative process
that uses (3) as the zero-order approximation,

18], R. Wait, “Influence of an inhomogeneous ground on the
propagation of VLF radio waves in the earth-ionosphere wave-
guide,” J. Res. NBS (Radio Sci.), vol. 69D, pp. 969-976, July 1965.

4 R. J. King, J. R. Wait, and S. W. Maley, “Experimental and
theoretical studies of propagation of ground waves across mixed
paths,” presented at the 1965 URSI Symp. on Electromagnetic Wave
Theory, Delft, The Netherlands.

15 J. R. Wait, Advances in Radio Research, vol. 1, J. A. Saxton, Ed
London: Academic, 1964, pp. 157-217.
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The z-directed electric field for the forward propagat-
ing nth mode in the region x <01is

E: = a: exp {-—iﬁjx}@i 4)

where af is the complex wave amplitude and &2 is the
basis field

@: = Ai cos kiy. (5)

A% is a normalization constant and k2 is related to
the propagation constant B2 and the characteristic
admittance ¥4 through the equations

B = (B2 = (B2 = R[1 = (CL)°] = kS, (60)
and

Ve = Sty (6b)

and S4 may be identified as the sine of the angle of
incidence for the nth mode. An exp(iwf) time depen-
dance is assumed.

Expressions for the modal equation and the electric
field in the region x>0 are obtained from (1) and (4),
respectively, by substituting the superscript B for 4.
The completeness of the set of waveguide modes (which
is an infinite one since the surface impedance concept is
used) has been discussed in earlier work.*!® Hence, any
arbitrary field in the waveguide can be expressed as a
linear combination of the basis set. Throughout this
work it will be found useful to use matrix notation;
hence the following definitions are made.

Let $4 and ®7 denote the basis field row vectors whose
elements are ®* and ®Z, respectively. At Port 4 the
forward and backward wave amplitudes af and b5 are
elements of the wave amplitude column vectors a4 and
b4, respectively. The matrix Y4 is the diagonal charac-
teristic admittance matrix whose element ¥4 is the nth
mode characteristic admittance.

The characteristic impedance matrix Z4 is equal to
the inverse of the matrix Y4, The matrix W4 is a diago-
nal matrix whose element W# is the power normaliza-
tion factor defined by

Wi =Y, f f [®2]2d4

= V(421 + sinc 2kah] 4 1)

where A is the area of the cross section and (sin x)/x is
defined as sinc x.

The symbol S44 is a square reflection scattering ma-
trix, whose element SZ4 is the complex amplitude of
the nth reflected mode when the mth mode of unit am-
plitude is incident on the junction from Port 4. The
symbol SB4 is a square transmission scattering matrix,
whose element SZ4 is the complex amplitude of the

16 R. L. Gallawa, “Propagation in non-uniform waveguides with
impedance walls,” Dept. of Elec. Engrg., University of Colorado,
Boulder, Tech. Rept. ARPA, Contract CST 7348, May 1964.
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nth mode transmitted through the junction from Port
A.
Similarly, the superscripts 4 and B are interchanged
when the above quantities are related to Port B.
ITI. ForMAL SoLuTION

Consider first the case in which the electromagnetic
waves are incident on the junction from Port A. The
continuity conditions for the transverse electric and
magnetic fields are given, respectively, by

4[] + S44]gd = — PBSBAg4 (8a)
and
PAVA[] — S44]gt = — PBYBSBAGA, (8b)

Premultiply (8a) by Y5®2 ($3 is the transpose of ®F)
and integrate over the area of the cross section toget

B4 [[ + SAA]aA = — JWBSB4gd (9)

where the element of the matrix C#4 is the coupling
coefficient C24,

Com =V f f Brdad A

= A4l [sinc (B — Eoyh
+ sinc (B 4 K]

and the orthogonal properties of the waveguide modes
are employed. N
Similarly, premultiply by ®4 to get

(10)

WA[I — S44]at = — ZACAB YBSBAgA (11)
where
N
ZACHB = (ZBCP4). (12)

The solution of (8) and (10) for S%4 and S44 yields?

SBA = — [WB]ICPA[T 4 S44] (13)

and
S44 — [] _ XAA][[ + XAA]—1 — AAA[[ _ AAA]—l (14a)
where

A4 = [ — QA44 = [IVA]-IZACABYB[I/VB]—ICBA. (14b)

The power normalization constants may be chosen
arbitrarily. For convenience in this case let the power
normalization matrices equal the identity matrix I. As a
result of this choice, it follows that

SBA = — CBA[] 4 S44] (15)

and

Add = %_[[ — JACAB yBCBA]_ (16)
Furthermore, the reciprocity theorem for waveguide

junctions® reduces to the convenient form
AB BA

Snm = Smn- (1 7)
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I't should be noted that the equation for the reflection
scattering matrix S44 is analogous to the equation for
the reflection coethicient in transmission line theory,
with X4 replacing the normalized load admittance.

On premultiplying (8a) and (8b) by Y4®4 and &2,
respectively, before integrating over the area of the
cross section, it can be similarly shown that

SAd = [WA4—J|[WA4 7] 1= — [V44] [T — v44]-1  (18a)
where

WA = [ —QVA4= CABZBCBAYA = [X44]-1  (18b)

In the above expression for S44, /44 is analogous to the
normalized load impedance. Note that A44 and V44
reduce to zero matrices in the absence of reflections.
Either (14a) or (18a) may be expanded into an infinite
series representation for S44,2

S44 = i (A4 P =

p=1

— 22 (V4HF. (192)
p=1

Also, on comparing (9) with the equation derived from

(8a) on premultiplying by V4®4 and integrating, it

becomes obvious that the matrices C4% and CZ4 are the

inverses of each other.

IV. UskE or REcIiPrROCITY THEOREM TO
FACILITATE THE SOLUTION

In general, the above expressions are valid, provided
all the characteristic values of A44 or V44 are less than
unity. Similar expressions may be derived for S®Z, the
reflection scattering matrix in the opposite direction.
However, in view of the reciprocity theorem, in order to
completely solve this problem, it is sufficient to derive
either .S44 or SBB using either one of the above series
expansions. Hence, in order to make the most efficient
use of this perturbational technique, it is necessary tc use
only the series expansion that converges most rapidly in
the particular situation under consideration. If the
reflections are very small for a particular direction of
propagation, then the reflection scattering matrix .S+
may be approximated by the first term of the series

(19b)

§44 v AAd = yA4d

in which case there is no significant advantage in using
either one of the two expansions for .S44. However, the
reflections for the two directions of propagation may
differ significantly in amplitude if the change in surface
impedance is large. This case is analogous to the scatter-
ing due to an abrupt change in the height of the wave-
guide.?

In order to illustrate this aspect of the problem, con-
sider the following extreme case. In the region x <0, the
tangential electric field vanishes at y= +4 (electric
conducting boundaries), and in the region x>0, the
tangential magnetic field vanishes at y = £ 4. This corre-
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sponds to Z&8=0 and YE=0. In this case the modal
equation (1) yields
Fuh = (2n — Vr/2 and ko = nr
n=1,273 (20
The basis fields are

4 A

o, = W cos kny and
B B

o, = W cos Fwmy (21)

and the coupling coefficients €24 are given by

B

Y, U2

o = I: - [sine im + n — Y=
+ sinc (m — n — 3=}
v, e 202m — 1)
= || (e . (220)
Y, (2m — 1) — (2n)?

Note that with these particular values for k& and k%,
the sine functions have extremes, which would mean
that the coupling between the modes is maximum as
may be expected. In particular, for the case in which the
principal mode is incident (m=1),

B
BA 2 l: Y, :l”‘“’
Cun=(—1)r——— . 22b
=D 1 — 4n? Yf (225)
Similarly, the coupling coefficient for the opposite
direction of propagation is
4
F I: Yy }C 5
nm YB mn
Yi /2 2(2n — 1)
= } (—pyrmte—— ————  (23a)
Yﬁ 2n — 1)2 — (2m)®

and in particular for the case in which the principal
mode is incident,

I C [Yf ]”2 ésb)
ms O T vl (

On examining (22b) and (23b), it is seen that for the
case in which the incident principal mode propagates
from the region bounded by the electric conductor to the
region bounded by the “magnetic conductor,” the cou-
pling coefficients C2* decrease approximately as 1/72,
but for the opposite direction of propagation, it is seen
that the coupling coefficients C4? decrease approxi-
mately as 1/#. [t follows that on propagating from Port
A to Port B, less energy is scattered into higher order
modes than for the reverse direction of propagation. As
a consequence it will now be shown that reflections at
Port A are significantly smaller than those at Port B.
First examine the expression for X44,
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A AB B BA

44 2
X = Z, Z CanpCpl
¥d

4 B 2 AB BA
=~ Zn I/1 Z Cnpcpl
»

= Z2V 0. (24)

The major contribution to X% comes from the
lower order modes (due to CE4). Hence, in the above
approximation, Y% is replaced by Y7 which is rather
constant for the lower order modes since l CEl:, (3).
Also it has been noted that C4B(CE4 =], Furthermore,
since Z{ Y7 ~1, it follows that Xa/~8.; hence the
coefficients A 144 are very small. Similarily, since Ci,45
decreases as 1/9?, it follows that

Ad A AB B BA

X =2 Z Ci, Y ,Con

A_B
=~ Zl Yl Z Clpcpn =~ 61n- (25)

Hence the coefficients A;,44 are also very small. There-
fore, the power series expansion S4* may, for all prac-
tical purposes, reduce to a very few terms. For the par-
ticular example (discussed Section V) in which Z§=0
and ZE=+/25, it has been shown that a very good
degree of accuracy is maintained if S is approxi-
mated by the first term of the series expansion (19a).

Now for the opposite direction of propagation, con-
sider the expression for X2B

BA_ A AB

BB B
Xot = Zn 2, CupVpCor.

Since CﬁlB decreases only as 1/p, it is necessary to
consider several higher order modes for which the char-
acteristic admittances Y72 differ appreciably from Y2
Hence, the coefficients XZP differ considerably from
8.1, and the reflection coefficients S22 cannot be ap-
proximated by AZE, Indeed in the particular example
discussed in V, the reflection coefficients SZ8 are sig-
nificantly greater than S44, but once the scattering
coefficients S44 are evaluated, the rest of the solution
to this problem may be obtained using the reciprocity
theorem without introducing any approximations. The
transmission scattering matrix SB4 can now be evalu-
ated using (16). For the opposite direction of propaga-
tion, the transmission scattering matrix S48 is obtained
using the reciprocity theorem (17). Finally, the reflec-
tion scattering matrix S#% (not derived from the series
expansion) is evaluated by employing the continuity
condition for the electric field at the transition plane
(x=0). In terms of the matrices defined above, this
condition is given by

q)B[I + SBB]aB = — PASAB,B.

(26)

27

On premultiplying (27) by VEDE the following equation
for SBB is obtained

SBB = — [] 4 CBAS4E], (28)
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V. AN ExaMPLE: COMPARISON BETWEEN
THE ANALYTICAL SOLUTION AND
THE EXPERIMENTAL DaTA

In order to demonstrate the validity of the analytical
solution, the numerical solutions were compared with
experimental data obtained from the model waveguide.
In order to fully appreciate the efficiency of the analyti-
cal solution, a rather large variation in the surface im-
pedance is considered in the particular example investi-
gated. The boundaries y= + % at Port A are assumed to
be perfectly conducting Z5=0 (corresponding to a
perfectly reflecting ionosphere R;= —1). At Port B the
surface impedance for the grazing modes at the bound-
ariesy = - his ZE=+/2y (a typical value for quiet day-
time conditions).4

For the case in which the principal mode is incident at
Port A, it is seen that the reflection scattering coeffi-
cients are all less than 0.01 and hence indistinguishable
from experimental error in the model waveguide (Fig.
3). On reversing the direction of propagation of the
incident mode, the reflections are found to be consider-
able, and the field pattern at the plane of discontinuity
is significantly different from that of the incident mode.
In order to obtain the analytical solution plotted to-
gether with the experimental data (Fig. 4), the reflec-
tion scattering matrix S44 is first derived assuming
SA44~A44~ — VA4 rather than directly evaluating SBZ
through the series expansion. The rest of the solution
is obtained using reciprocity as indicated in the previ-
ous section. The scattering coefficients S,14% are tabu-
lated in Table I.

TABLE I
ScATTERING COEFFICIENTS 577
n Re (Saf# Im (S:7)
1 —1.0037 0.0373
3 0.0053 —0.0568
5 —0.0027 0.0336
7 0.0020 —0.0262
9 —0.0019 0.0246
11 0.0024 —0.0313
13 —0.0308 —0.0023
15 0.0138 0.0010
17 —0.0090 -—0.0007
19 0.0065 0.0005

VI. CONCLUDING REMARKS

I't has been shown from the experimental results that
a first-order approximation for $44 yields very satisfac-
tory results even for the case of a large variation in the
surface impedance. The solution based on the direct
evaluation of SBZ is {ar less efficient and leads to poorer
results than the solution based on the reciprocity the-
orem. The quasi-optical approach used in this solution
can be further extended to the case in which the surface
impedance varies arbitrarily along a finite path.” The
region in which the surface impedance varies may be
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1.0
RELATIVE AMPLITUDE
(CALCULATED)
8-
RELATIVE AMPLITUDE

W (EXPERIMENTAL)
=
z 6
=
<<
w
=
= K12
p}
w
[+4

2

° h=3.05x °
w 40°
@ RELATIVE PHASE
I 30+ (CALCULATED)
W "““— RELATIVE PHASE
= 20 (EXPERIMENTAL)
<
pu)
I 10°

°

y

h=3.05 A

Fig. 4. Electric field pattern at the plane of discontinuity (x =0)
for the case in which the principal mode is incident from Port B.

considered to consist of an infinity of elementary wave-
guides. The analysis then leads to an infinite set of
coupled differential equations for the forward and back-
ward waves, as in the analysis of waveguides with vari-
able cross sections.? It is interesting to note that the
technique developed in this paper is not only suitable for
large abrupt variations in the surface impedance but
also for infinitesimal variations, in which case the exact
analytical expression for the reflection scattering ma-
trix S44 reduces from an infinite sum to the first term of
the series. This solution may be readily generalized for
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the case in which different surface impedances charac-
terize the upper and lower boundaries of the waveguide.

Finally, it should be pointed out that nowhere in the
derivation of the solution to this problem is it necessary
to evaluate directly the inverse of a matrix. Hence, in
deriving the numerical solution to a particular problem,
it is not a very crucial problem to determine the dimen-
sion of the truncated matrices. Since a scattering coeffi-
cient of amplitude 0.01 would indicate that the power
scattered into the corresponding mode is about 10~ of
the total scattered power, modes with smaller ampli-
tudes may be neglected for all practical purposes. It has
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also been pointed out that power from the incident
principal mode will be essentially scattered into the
lower order modes; therefore, modes for which | C,|z>1
should not be considered, as the numerical example
clearly illustrates. This, moreover, justifies the applica-
bility of the “constant” finite surface impedance con-
cept referred to in Section II.
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Multiline 2N-Port Directional where

Couplers ™ 2:(0) 7]
In 1954, Oliver [1] described the basic 22(0)

theory and design of a four-port contra- V= .

directional coupler which utilized two sets

of coupled transmission lines. We attempt

here to generalize this result so as to obtain L on(0)

a 2N-port contradirectional coupler. r2:(0) 7
We use the following notation. Capital 15(0)

letters will stand for matrices. The Zjth ele-

ment of a matrix 4 will be denoted either L= :

by ay; or (4);. The kth element of a column .

vector a will be denoted by (a)z. in(0)

Consider a system N-+1 parallel cylin-
drical conductors operating in the TEM
mode. Since the operation is TEM, we can 1
define a voltage v;(x) and a current 4;(x) for T,
the 7th conductor

line ¢

It may be shown [2] that T, is given by

Tyl w
where 1y is the N by N identity matrix,

inductance matrices per unit length for the
given configuration. L can be determined

u() 7] from C and vice versa [2] since LC=puely.
v2(f) The matrix C is hyperdominant, that is, all
Vv, = . its diagonal elements are positive and all its
: off-diagonal elements are negative [3]:
Lox @) ¢z > 0. o (3)
iy () T ;<0 i3] (6)
i2() Also, all the elements of L are positive:
L=| - I, 2 0. (7)
Note that
Lin (@) PR
Opg  Cpg
[}N_ AW . @ We now introduce incident and reflected
AG | 1y wave amplitudes (a), and (b), (p=1, 2,

3,-+-,2N)

vi(x)=—-f E-dR[ . a=[‘3 . b= E]
Line N41 2 fixed A= tanh(jwl\/'ue), as by
=12+, N) €3] G = C/+/we, with
w-f o 1
around conduct(.)rl' z fixed and C and L are the static capacitance and (al)k = 2\/’.—]00 (vk(o) + ykozk(o))’ (83)
G=1,2--,8) @ :
where E and H denote the electric and mag- v (0} w (Bo)e = 24/, ©:(0) = rie(0)),  (80)
netic field vectors. The N-41th conductor (0] —= = CONDUCTOR | b — i 1 ’
h'aS bt_zen 'taken as a voltage ref(?renge. The L (0) e 2O 2 e ® (ar = —= (w{) — riix®)),  (8c)
situation is shown schematically in Fig. 1. 2 s " 2 21y
In practice, the N41th conductor may 1,0} — o2 3 e i) 1
be a closed waveguide in which the other N (B2)i = o @) + rede@).  (8d)
conductors are contained, as shown in Fig. 2 (0} e WO N wh L Vi
. - N
in cross section. . N+l N The parameters 7z, and 7;, represent pre-
Lfet us define T3, the transfer impedance T 7 scribed terminating resistances at their re-
matrix of the system, as follows x=0 2=t spective ports. The goal of this work is to
v, v, Fig. 1. N 41 coupled transmission lines. choose the #’s so that directional coupler
|:~] — Tz[ (3) operation is achieved.
I, I, Define a 2N by 2N transfer scattering
matrix T
b T as
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