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Fig. 14. Oscillator amplifier combination (excluding bias
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Fig. 15. Transistor oscillator doublers combination (excluding
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V. CONCLUSIONS

A common base varactor tuned transistor amplifier

circuit has been analyzed and the circuit conditions for

proper oscillation have been defined. Two such oscil-

lators were constructed, one at L-band and the other at

UHF. Both performed as expected, the results conform-

ing quite well to what the analysis predicted. It is ex-

pected that the use of multiple diodes can improve the

performance of the circuit. Collector base lmultiplication

can be used to extend this operation into S-band.
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Propagation in a Microwave Model Waveguide of

Variable Surface Im~edance–Theorv

and Experiment

E. BAHAR, MEMBER, IEEE

Absfracf—In this paper propagation in a model terrestrial wave-

guide is investigated. The surface impedance of the waveguide

boundary is assumed to vary along the path of propagation. A quasi-

optical approach is used to derive the solution for the case of an

abrupt variation in the surface impedance. The reciprocity theorem is

employed to facilitate that solution for both directions of propagation.

Experimental verification of this technique is obtained from measure-

ments in the model waveguide.
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1. INTRODUCTION

I
N EARLIER model studiesl,2,3 of radio propagation

in a nonuniform terrestrial waveguide, the varia-

tions of the electrical properties of the ionosphere

1 S. W. lblaley ?nd E. Bahar, “Effects of wall perturbations in
multlmode wavegu,des, ” ~. Res. NBS (Radio Scz’. ), vol. 68D, pp.
35–42, January 1964.

2 E. Bahar and J. R. Wait, “Microwave model techniques to
study VLF radio propagation in the earth-ionosphere waveguide, ” in
PYOC. of the Symp. on Qz~asLOptics, J. Fox, Ed. Brooklyn, iV. Y.:
Polytechnic Press, 1964, pp. 447-464.

3P “Propagation in a model terrestrial waveguide of nonuni-
form hei.gkt: theory and experiment, ” Y. Res. NBS (Radio SGi. ), VO1.

69D, pp. 1445-1463, November 1965.
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Fig. 1. Cross section of the dual model waveguide with finite
surface impedance boundaries.

were represented by corresponding variations in the

effective height of reflection of the ionosphere boundary

along the path of propagation. The ionosphere, consid-

ered sharply bounded, was characterized by a constant

finite surface impedance boundary.4,5 While this repre-

sentation of the nonuniform ionosphere serves as a

convenient model to study mode conversion phenom-

ena, it is evident from comparison c~f the attenuation

rates along various paths of propagation at different

times of the dayc that a constant surface impedance

boundary cannot, in general, be a goocl representation of

the ionosphere boundary. For the purlpose of investigat-

ing radio propagation over large distances, it would

therefore be more appropriate to characterize the iono-

sphere by a boundary of variable height and surface

impedance.

In this paper the effects of an abrupt variation in the

surface impedance of the boundary are investigated in

particular, and the height of the ionosphere is assumed

constant. Furthermore, as in the two-dimensional dual

model discussed earlier,l,2,4 a flat earth approximation

~vill be assumed and the effects of the earth’s magnetic

field n-ill be neglected. The effects of a gradual variation

in the surface impedance along the path of propagation

may also be derived from these results, T

The basic experimental tool in this work is the rec-

tangular dual mode18 waveguide whose half height h

corresponds to the height of the ionosphere in wave-

lengths, as shown in Fig. 1. The vertical boundaries (at

1 E. Bahar, ‘(Model studies of the influence of ionosphere per-
turbations on VLF propagation, ” Dept. of Elec. Engrg., University of
Colorado, Boulder, Tech. Rept. ARP.\, Contract CST 7348, May
1964.

~ J. R. Wait and K. P. Spies, “Characteristics of the earth-iono-
sphere wavexulde for VLF radio waves, ” NBS Tech. Note 300,
December 1964.

s D. D. Crombie, “On the use of VLF measurements for obtaining
information on the lower ionosphere (especially during solar flares ),”
PYOC. IEEE, vol. 53, pp. 2027–2034, December 1965.

~ E. Bahar. Daner to be rmblished in J. Rer. NBS (Radio Sci. ).
vol. 2 (New Sei-;esj, March 1967.

8_ —, “Propagation of VLF radio waves in a model earth-
ion osphere waveguide of arbitrary height, amd finite surface im -
pedance boundary: theory and experiment, ” J. Res. NBS (Radio
Sci.), vol. 1 (New Series), pp.925–938, August 1966.
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Fig. 2. Waveguide with an abrupt variation in the surface imped-
ance boundaries anal yzed as a multiport waveguicle j unctiou.

z = + d/2) are electric conductors. Only iPEfiO modes

with symmetric electric fields in the (y, z) plane are

launched into the system such that the (x, z) plane in the

dual model (on which Hz= O) corresponds tcl a perfectly

conducting earth. The horizontal finite sur-[ace impeda-

nce boundaries (at y = I h) correspond to the surface

impedance for grazing modes at the ionosphere bound-

ary.4 Hence either the upper or lower half of the wave-

guide corresponds to the earth-ionosphere waveguide.

II. FORMULATION OF THE PROBLEM

Consider a multimode waveguide with uniform cross

section into which only TEaO modes (n= 1, 3, 5, . . . )

are launched, as shown in Fig. 2. The surface impedance

Z~ at the narrow boundaries y = ~ h is Z; for x <O and

Z: for x >0. The transition region (x= O plane) in

which the discontinuity of the surface impedance occurs

is treated as a two-port waveguide j unction.2 The right-

hand coordinate systems connected with Ports A and B

are x., y., z., and xb, yb, zb, respectively, such that the y

axes coincide with the transition plane and the x axes

point toward the waveguide junction.

This class of problems involving wavegu ide discon-

tinuities can, in general, be reduced to the solution c}f an

infinite set of linear algebraic equations. g Solutions of

the infinite set of equations have been derived in terms

of infinite products. These solutions are based either on

a method for inverting the special form of the resulting

matrix equation, IO,M or on the function theoretical

method which represents an infinite series of a certain

type by a contour integral of the Cauchy type.lz The

quasi-optical solution developed in the paper is ex-

pressed in terms of an infinite sum; the higher order

terms in the series correspond to correction terms due to

finite reflections at the waveguide discontinuity. These

g R. E. Collin, Field Theory of Guided Waves. New York: McGraw-
Hill, 1960.

10 R. Mittra, “Relative convergence of the solution of a doubly
infinite set of equations, ” J. Res. NBS, vol. 67D, pp.245–254, March–
April 1963. -

. .

u D, S, Karjala and R. Mittra, “Scattering at the junction fJf two

selni-infiuite parallel-impedance plane waveguides, ” Canadiun J.
Pkys., vol. 43, pp. 849-854, May 1965.

12H. J. Frankena, “Coupling of two semi-iufinite circular wave-
guides with walls of different surface admittances, ” presented at the
1965 URSI Symp. on Electromagnetic Wave Theory, Delf t, The
Netherlands.
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solutions have been found to be very suitable in the case

of propagation in multimode waveguides in which the

surface impedance may vary abruptly from zero to the

order of magnitude of the free space wave impedance

q = (wO/eO)112. The efficiency of this technique is demon-

strated by a comparison with experimental results taken

from a model waveguide. Furthermore, the quasi-

optical solutions may be readily generalized to derive

the solution for propagation in waveguide regions in

which the surface impedance varies continuously in an

arbitrary manner. 7

This problem is closely related to the extensive work

on mixed-path propagation which starts with the com-

pensation theorem and proceeds via a first-order per-

turbation of an integral equation. The formulation has

been applied to the curved earth-ionosphere wave-
guide.la Experimental model studies of propagation ‘f

ground waves across mixed paths have also been con-

ducted.” A review of the progress in this area (including

many references to earlier work) has been presented by

Wait.’5

The modal equation satisfied by a waveguide mode

propagating in the region bounded by the surface im-

pedance Z; is8

\vhere k is the free space wavenumber, C: can be iden-

tified as the complex angle of incidence of the nth mode

on the surface impedance boundaries of the waveguide,

Vi is the surface admittance (the reciprocal of the

surface impedance Z~), and R; is the reflection coeff-

icient for horizontally polarized waves. Actually Y~ is

also a function of the mode number, but considering that

most of the energy in the multimode waveguide is dis-

tributed into the lower order modes, the “constant”

surface impedance concept has been employed. For

grazing modes, I C: I <<I Y; I q and R; may be approx-

imated by

R; = – exp { – 2CfZ~/T}. (2)

Hence (1) reduces to

mr
c:= .— ? 2 =1 ,3,5.... (3)

2(kh – izf/n) ‘

Therefore, for modes of grazing incidence in multimode

waveguides, I C: 12<<1.

For the cases in which the approximate formula is not

appropriate, (1) may be solved by an iterative process

that uses (3) as the zero-order approximation.

‘3 J. R. Wait, ‘(Influence of an inhomogeneous ground on the
propagation of VLF radio waves in the earth-ionosphere wave.
guide, ” ~. Res. NBS (Radio Sci. ), vol. 69D, pp. 969-97!, July 1965.

14 R, J. King, J. R. Wait, and S. W. Maley, “Experimental and

theoretical studies of propagation of ground waves across mixed
paths, ” presented at the 1965 URSI Symp. on Electromagnetic Wave
Theory, Delft, The Netherlands.

‘5 J. R. Wait, Advances in Radio Research, vol. 1, J. A. Saxton, Ed
London: Academic, 1964, pp. 157-217.

The z-directed electric field for the for~vard propagat-

ing nth mode in the region x <O is

E: = a: exp ~ – i~~x) +: (4)

where a$ is the complex wave amplitude and @~ is the

basis field

@~ = .4; COS kty. (5)

AA is a normalization constant and k: is related ton

the propagation constant ~$ and the characteristic

admittance Y: through the equations

P: = [k’ – (k$2]]/2 = k[l – (C~)2]’1’ = kS~ (6a)

and

Y: = s:/q (6b)

and S: may be identified as the sine of the angle of

incidence for the nth mode. An exp (icot) time depen-

dence is assumed.

Expressions for the modal equation and the electric

field in the region x> O are obtained from (1) and (4),

respectively, by substituting the superscript B for .4.

The completeness of the set of waveguide modes (which

is an infinite one since the surface impedance concept is

used) has been discussed in earlier work,l,lo Hence, any

arbitrary field in the waveguide can be expressed as a

linear combination of the basis set. Throughout this

work it will be found useful to use matrix notation;

hence the following definitions are made.

Let @A and@ denote the basis field row vectors whose

elements are O: and ~~, respectively. At Port A the

forward and backward wave amplitudes a; and b: are

elements of the wave amplitude column vectors a~ and

bA, respectively. The matrix YA is the diagonal charac-

teristic admittance matrix whose element Y: is the nth

mode characteristic admittance.

The characteristic impedance matrix Z~ is equal to

the inverse of the matrix YA. The matrix WA is a diago-

nal matrix whose element W: is the power normaliza-

tion factor defined by

w:=Y: Ss[@~]2dA

= Y~(A~)’[1 + sine 2~h].4 (7)

where A is the area of the cross section and (sin x)/.v is

defined as sine x.

The symbol S~-4 is a square reflection scattering ma-

trix, whose element S~~ is the complex amplitude of

the nth reflected mode when the nzth mode of unit am-

plitude is incident on the junction from Port A. The

symbol S~A is a square transmission scattering matrix,

whose element S~~ is the complex amplitude of the

1’ R. L. Gallawa, “Propagation in non-uniform waveguides with
impedance walls, ” Dept. of Elec. Engrg., University of Colorado,
Boulder, Tech. Rept. ARPA, Contract CST 7348, May 1964.
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nth mode transmitted through the junction from Port

.4.

Similarly, the superscripts A and .B are interchanged

when the above quantities are related to Port B.

II 1. FORMAL SOLUTION

Consider first the case in which tlhe electromagnetic

waves are incident on the junction from Port A. The

continuity conditions for the transverse electric and

magnetic fields are given, respectively, by

(8a)@4 [~ + S~~] ~A = – @B~~3A ~A

and

@A YA [1 — SAA]a~ = — l?B YB.SBAaA. (8b)

Premultiply (8a) by Y@B (~~ is the transpose of @B)

and integrate over the area of the cross section to get

c~~ [1 + SAA]aA = – ~B~BAaA (9)

where the element of the matrix C~;A is the coupling

coefficient C~~,

= A~Al[sinc (k: – ll)h

+ sine (k:+ k~,)h].~ (lo)

and the orthogonal properties of the waveguide modes

are employed.

Similarly, premultiply by ~A to get

?VJ [~ – S-i~]aA = – Z.4~.4B ~B~&4aA (11)

w-here

ZACJB = (ZBCBA). (12)

The solution of (8) and (10) for .S~~ and S-4A yields’

~B.4 = _ [~~TB]-lcBA [~ + ~AA] (13)

and

LJAA = [~ _ ~AA] [~ + .~A.J]-l = &4.4 [~ – AAA]-1 (ha)

\vhere

jyAA = ~ _ ZAAA ~ [~~A]–IzA@B yB[~7B]–IcBA. (14b)

The power normalization constants may be chosen

arbitrarily. For convenience in this case let the power

normalization matrices equal the identity matrix 1. As a

result of this choice, it follows that

sBA = _ cB.4 [~ + sL.4] (15)

and

AA1 = ~ [~ – Z~C~B WCZ’A]. (16)

Furthermore, the reciprocity theorem for waveguide

j unctions3 reduces to the convenient form

All
s ,’ m = SE. (17)

It should be noted that the equation for the reflection

scattering matrix SAA is analogous to the equaticln for

the reflection coefficient in transmission line theory,

with XA.L replacing the normalized load admittance.

On premultiplying (8a) and (8b) by Y4&A and 6B,

respectively, before integrating over the area of the

cross section, it can be similarly shown that

SAA = [~~AA –I] [JV”AA +~]-1 = –– [F7A.4] [I–– vA-4]-l (Isa)

where

?~A~ = ~ _ 2VAA = CA BZBCBA J7A = [~”A.4]–l. (18b)

In the above expression for SAA, WAA is analogous to the

normalized load impedance. Note that A’lA and V-4A

reduce to zero matrices in the absence of reflections.

Either (14a) or (18a) may be expanded intc} an infinite

series representation for SAA,2

p=l p=l

Also, on comparing (9) with the equation derived from

(8a) on premultiplying by Y41$A and integratin:~, it

becomes obvious that the matrices CAB and CBA are the

inverses of each other.

IV. USE OF RECIPROCITY THEOREM TO

FACILITATE THE SOLUTION

In general, the above expressions are valid, provided

all the characteristic values of AA* or VA~ are less than

unity. Similar expressions may be derived for SBB, the

reflection scattering matrix in the opposite direct-ion.

However, in view of the reciprocity theorem, in order to

completely solve this problem, it is sufficient to derive

either SAA or SBB using either one of the above series

expansions. Hence, in order to make the mclst efficient

use of this perturbational technique, it is necessary tcl use

only the series expansion that converges most rapidly in

the particular situation under consideration. If the

reflections are very small for a particular direction of

propagation, then the reflection scattering matrix .S4~

may be approximated by the first term of the series

s~’1 = AIA = – VAA (19b)

in which case there is no significant advantage in using

either one of the two expansions for S-lA. However, the

reflections for the two directions of propagation may

differ significantly in amplitude if the change in surface

impedance is large. This case is analogous to tlhe scatter-

ing due to an abrupt change in the height of the wave-

guide.z

In order to illustrate this aspect of the problem, con-

sider the following extreme case. In the region x <O, the

tangential electric field vanishes at y = ~ h (electric

conducting boundaries), and in the region x >0, the

tangential magnetic field vanishes at y = ~ k. This corre-
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spends to Z: = O and

equation (1) yields

kfh = (2?2 –

The basis fields are

IEEE TRANSACTIONS ON MICROWAVE THEORY AND

Y;= O. In this case the modal

1)7/2 and k~lz = M

n = 1, 2, 3. (20)

10: = COSkmy
(y:L) l/, A

and

1
+: = Cos kmy

(y:)l/2 B

and the coupling coefficients C~~ are given by

[1
Y: 1/2

c:: = — [sine (m+ n – *)T
Y;

+ sine (m – n – *)7r]

(21)

Y: ‘/’

[1— (–1)”-”-’
2(2nz – 1)

. . (22a)
Y: (2??2– 1)2 – (27L)’

Note that with these particular values for k# and k:,

the sine functions have extremes, which w-ould mean

that the coupling between the modes is maximum as

may be expected. In particular, for the case in which the

principal mode is incident (W= 1),

2 Y: ‘j’
c:= (–1)” [11_49C2 y: “

(22b)

Similarly, the coupling coefficient for the opposite

direction of propagation is

Y:c::=[1
_ cmnBA

Y:

[1
Y: ‘1’ 2(2?2 – 1)

._ (–1)”-=’ (23a)
yB (2?2 – 1)2 – (2m\’

m

and in particular for the case in which the principal

mode is incident,

2(272 – 1) Y: ‘/’
C:IB= (–l)” [1— . (23b)

(2?2 – 1)’ – 4 Y:

On examining (22b) and (23 b), it is seen that for the

case in which the incident principaI mode propagates

from the region bounded by the electric conductor to the

region bounded by the ‘~magnetic conductor, ” the cou-

pling coefficients C& decrease approximately as 1 /n2,

but for the opposite direction of propagation, it is seen
AB decreaSe ZLpproxl-

that the coupling coefficients C.l

mately as I/n. It follows that on propagating from Port

A to Port B, less energy is scattered into higher order

modes than for the reverse direction of propagation. As

a consequence it will now be shown that reflections at

Port A are significantly smaller than those at Port B.

First examine the expression for X~#.

TECHNIQUES NOVEMBER

P

P

= z: Y:6nl. (24)

The major contribution to X# comes from the

lower order modes (due to C~#). Hence, in the above

approximation, Y: is replaced by Y; which is rather

constant for the lower order modes since I C: I ~<<1, (3).

Also it has been noted that CAB CBA = 1. Furthermore,

since Z# Y~ = 1, it follows that X~~ = ti,,l; hence the

coefficients Aml~~ are very small. Similarity, since CIP~B

decreases as I/@z, it foIlows that

AB B BA

X:%* = z; ~ C,p Ypcpn

= Zx z Clpcp. = h. (25]

Hence the coefficient ts AimAA are also very small. There-

fore, the power series expansion S~~ may, for all prac-

tical purposes, reduce to a very few terms. For the par-

ticular example (discussed Section V) in which Z~ = O

and Z:= {~q, it has been shown that a very good

degree of accuracy is maintained if S$~ is approxi-

mated by the first term of the series expansion (19a).

Now for the opposite direction of propagation, con-

sider the expression for X~~

(26)

Since C:? decreases only as l/p, it is necessary to

consider several higher order modes for which the char-

acteristic admittances Y: differ appreciably from Y:.

Hence, the coefficients X~~ differ considerably from

8,LI, and the reflection coefficients S~~ cannot be ap-

proximated by A~~. Indeed in the particular example

discussed in V, the reflection coefficients S~~ are sig-

nificantly greater than S#$, but once the scattering

coefficients S~~ are evaluated, the rest of the solution

to this problem may be obtained using the reciprocity

theorem without introducing any approximations. The

transmission scattering matrix SBA can now be evalu-

ated using (16). For the opposite direction of propaga-

tion, the transmission scattering matrix SAB is obtained

using the reciprocity theorem (17). Finally, the reflec-

tion scattering matrix SB~ (not derived from the series

expansion) is evaluated by employing the continuity

condition for the electric field at the transition plane

(x= O). In terms of the matrices defined above, this

condition is given by

(27)@B[1 + SBB]a~ = – @~SA~a~.

On premultiplying (27) by YB@B the following equation

for SBB is obtained

SBB = – [~ + cBAs~B]. (28)
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V. AN EXAMPLE: COMPARISON BETWEEN

THE ANALYTICAL SOLUTICJN AND

THE EXPERIMENTAL DATA

In order to demonstrate the validity of the analytical

solution, the numerical solutions were compared with

experimental data obtained from the model waveguide.

In order to fully appreciate the efficiency of the analyti-

cal solution, a rather large variation in the surface im-

pedance is considered in the particular example investi-

gated. The boundaries y = t h at Port A are assumed to

be perfectly conducting Z;= O (corresponding to a

perfectly reflecting ionosphere R;= – 1). At Port B the

surface impedance for the grazing modes at the bound-

aries y = t his Z~ = {~q (a typical value for quiet day-

time conditions).1

For the case in which the principal mode is incident at

Port A, it is seen that the reflection scattering coeffi-

cients are all less than 0.01 and hence indistinguishable

from experimental error in the mode[ waveguide (Fig.

3). On reversing the direction of propagation of the

incident mode, the reflections are found to be consider-

able, and the field pattern at the plane of discontinuity

is significantly different from that of the incident mode.

In order to obtain the analytical solution plotted to-

gether with the experimental data (Fig. 4), the reflec-

tion scattering matrix SAA is first derived assuming
SAA ~AAA ~ _ VAA rather than directly evaluating S~~

through the series expansion. The rest of the solution

is obtained using reciprocity as indicated in the previ-

ous section. The scattering coefficients S~lAB are tabu-

lated in Table I.

n

11
13
15
17
19

TABLE I

SCATTERING COEFFICIENTS SflB

Re (Sf~) Im (SJ~)

–1.0037 0.0373
0.0053 –O .0568

–0.0027 0.0336
0.0020 –() .0262

–0.0019 0.0246
0.0024 –0.0313

– 0.0308 –0.0023
0.0138 0.0010

–o .0090 –0.0007
0.0065 0.0005

VI. CONCLUDING REMARKS

It has been shown from the experimental results that

a first-order approximation for SAA yields very satisfac-

tory results even for the case of a large variation in the

surface impedance. The solution based on the direct

evaluation of S~B is far less efficient and leads to poorer

results than the solution based on the reciprocity the-

orem. The quasi-optical approach used in this solution

can be further extended to the case in which the surface

impedance varies arbitrarily along a finite path. T The

region in which the surface impedance varies may be

Fig. 3.
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Fig. 4. Electric field pattern at the plane of disconti nuity (.z ==O)
for the case in which the principal mode is incident from Port B.

considered to consist of an infinity of elementary wave-

guides. The analysis then leads to an infinite set of

coupled differential equations for the forward and back-

ward waves, as in the analysis of waveguides with vari-

able cross sections. ~ It is interesting to note that the

technique developed in this paper is not only suitable for

large abrupt variations in the surface impedance but

also for infinitesimal variations, in which case the exact

analytical expression for the reflection scattering ma-

trix .W-4 reduces from an infinite sum to the first tern-i of

the series. This solution may be readily generalized for
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the case in which different surface impedances charac-

terize the upper and lower boundaries of the waveguide.

Finally, it should be pointed out that nowhere in the

derivation of the solution to this problem is it necessary

to evaluate directly the inverse of a matrix. Hence, in

deriving the numerical solution to a particular problem,

it is not a very crucial problem to determine the dimen-

sion of the truncated matrices. Since a scattering coeffi-

cient of amplitude 0.01 would indicate that the power

scattered into the corresponding mode is about 10–4 of

the total scattered power, modes with smaller ampli-

tudes may be neglected for all practical purposes. It has

also been pointed out that power from the incident

principal mode will be essentially scattered into the

lower order modes; therefore, modes for which I C. I ‘>>1

should not be considered, as the numerical example

clearly illustrates. This, moreover, justifies the applica-

bility of the “constant” finite surface impedance con-

cept referred to in Section II.
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Correspondence

M.ultiline 2N-Port Directional

Couplers

In 19S4, Oliver [1] described the basic
theory and design of a four-port contra-
directional coupler which utilized two sets
of coupled transmission lines. We attempt
here to generalize this result so as to obtain

a 2iV-port contradirectional coupler.
We use the following notation. Capital

letters will stand for matrices. The ijth ele-

ment of a matrix A will be denoted either
by a~i or (A );fi The kth element of a column
vector a will be denoted by (.a)~.

Consider a system N+ 1 parallel cylin-
drical conductors operating in the TEM

mode. Since the operation is TEM, we can
define a voltage v;(x) and a current i~(~) for

the ith conductor

.f

linei
ik (72) = — E. dR

he iv+l e f,xed

(i=l,2, . . .. iv) (1)

ii(%) =
J

H.dR
mound conductor i z fixed

(i=l,2, . . ..N) (2)

where E and H denote the electric and mag-
netic field vectors. The N+ lth conductor

has been taken as a voltage reference, The
situation is shown schematically in Fig. 1.

In practice, the N+ lth conductor may
be a closed waveguide in which the other N
conductors are contained, as shown in Fig. 2

in cross section.

Let us define T=, the transfer impedance

matrix of the system, as follows

[+1 “w ‘3)
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where

[14
m(o) VI(1)
V2(0) V2(1) 1

Vl= . Vq= -

VN(o) 1 VN(i)

[1h
L(o) ;1(1)

;2(0) & (1) 1
11= . 1,= .

. .
iV(o) iV(;)

It maybe shown [2] that 1“. is given by

where I.v is the N by N identity matrix,

and C and L are the static capacitance and

“, [0)
C0NDuC70R I

v,(1)

i, (01 — - — i,(t)

V*(O)
2 v2u)

,2(0) — — ,2[1)

V3(o)
3 .s(0

,3(0) — — i#.)

VN(0) N VN(11IN(o)— — iN(i)

N+l

I I
*,O ~=g

Fig. 1. IN +1 coupled transmission lines.

Fig. 2. Cross-sectional view of multihne

inductance matrices per unit length for the

given configuration. L can be determined
from c and vice versa [2] since LC = MIN.

The matrix C is hyperdominant, that is, all
its diagonal elements are positive and all its
off-diagonal elements are negative [3]:

Also, all the elements of L are positive:

l,, >0. (7)

Note that

WTWI lm.
—. —,

qP’? %

We now introduce incident and reflected

wave amplitudes (a)P and (b)P (@= I, 2,
3,. .,2N)

a=[:l’ ‘=[:l
with

(aJk = +x (v,(O)+r~&(0)), (8a)
0

(b,), =+x(w(O) – r,o;k(0)), (8b)
o

(aJk = *L (v,(l) – ??@,(l)), (8c)

(b,), =2* (Z@ + t’,,h(q). (8d)

The parameters ?~Oand rhl represent pre-
scribed terminating resistances at their re.
spective ports. The goal of this work is m
choose the r’s so that directional coupler
operation is achieved.

Define a 2N by 2N transfer scattering

matrix T,

(9)

‘a=[3+1’ ’10)


